Spontaneous emergence of large scale cell cycle synchronization in amoeba colonies

Igor Segota, Laurent Boulet & Carl Franck

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA

Submitted to Physical Biology

Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.

Keywords: cell cycle, Dictyostelium discoideum, collective behavior

Introduction

Collective oscillations of entire populations characterize many biological processes such as synchronized flashing of fireflies [1], glycolytic oscillations in yeast [2], cell aggregation in amoebae [3], circadian rhythms in cyanobacteria [4], [5], somite segmentation in zebrafish embryos [6], nuclear division in multinuclear HeLa cells [7] and synchronized cleavage divisions in Xenopus frog embryos [8]. These cooperative interactions can provide a fitness advantage, e.g. in cases when the environment is depleted of nutrients [3] or to assist in mate finding [1]. Recently, there has been a substantial progress in synthetic biology with the goal of engineering oscillatory genetic networks [9] and coupling them by quorum sensing [10]. In this work, however, the focus is on naturally emergent collective behavior in a model unicellular
eukaryote, *Dictyostelium discoideum*. In nature, *D. discoideum* lives in the soil and feeds on bacteria in their vegetative growth state [11]. Keating and Bonner [12] and Kakebeeke et al. [13] showed that vegetative cells can interact by repelling each other and Phillips and Gomer [14] later identified AprA as an autocrine chemorepellant in vegetative cells. When starved of nutrients *D. discoideum* transitions to a collective state by chemotactically grouping into multicellular aggregates of 10^5 cells, eventually differentiating into stalk and spore cells, forming a lifeboat for their genomes. However, in comparison to yeast *S. cerevisiae* [15] or *Xenopus* [16], researchers still do not have a full array of cell cycle markers for *D. discoideum* [17], [18]. The first live-cell S-phase marker has only recently been introduced in *D. discoideum* [19].

Results

We studied *D. discoideum* population dynamics on glass substrates. A typical example of the dynamics of the average cell surface density in the exponential part of the vegetative phase was obtained by automated counting (Fig. 1a). Potentially interesting features are any deviations from pure exponential growth that do not result from uncertainty in counting. Here, the initial cell count is 40 ± 2 cells, spread out uniformly over a 4 mm^2 viewing area. During 26 hours, the cells did not move significantly (200 µm) compared our $2.3 \text{ mm} \times 1.8 \text{ mm}$ recording area, resulting in patchy growth (Fig. 1b) further investigated in [20].

First, we show that the deviations from exponential growth (Fig. 1a) indeed represent signatures of collective cell divisions, by measuring the time dynamics of cell size distribution (Fig. 1c). This approach was recently used to quantify induced cell synchronization [21]. The time dynamics of cell size distributions (Fig. 1c) shows a clear periodic pattern, demonstrating partial synchrony in cell growth. To ensure that this is not a lineage effect (i.e. a low number subpopulation), we show the entire viewing area binned into 27 µm wide squares, with each bin color-coded by the local cell size and averaged over 1-2 cells (Fig. 1d). This demonstrates that synchronization in cell growth is not localized to a particular patch, thereby excluding any possibility of a lineage effect alone causing the large-scale oscillations. The cell-to-cell variation in doubling times is 7.3 ± 0.8 hours (Fig. S2) which is reflected in a strong lineage effect in a monoclonal population (see SI).

Next, we ensured that this periodic growth correlates with cell divisions. We manually annotated all cell division events, omitting initial events corresponding to declustering of cell clusters and cytokinesis of multinuclear cells present in suspension cultures [22], only counting single cell splitting into two, preceded by rounding up at the onset of cytokinesis. These manual annotations agree within $< 1\%$ to automated counts: for the data presented in Fig. 1, we counted 343 cell division events compared to 344 particles detected by automated counting (excluding initial declustering events). The cell division dynamics shows clear pulses (Fig. 1e) correlated with cell growth pattern. Furthermore, each collective cell division pulse (colored dots, Fig. 1e) is not localized to a particular patch (Fig. 1f). However, this still does not exclude the
possibility of spontaneous synchronization in suspension cultures which were used to grow cells before plating.

The cells grown in suspensions have a broader size distribution (Fig. 2a) than those on substrates, consistent with previous observations of cell clusters [23] and multinuclear cells [22]. These are all counted as a single particle by automated counting (Fig. 1a), however they are easily discriminated by cell size (particles between 150 and 300 \(\mu \text{m}^2 \) in Fig. 1c). Measurements of the cell size distribution dynamics in suspension cultures show no periodic growth (Fig. 2b), consistent with previous observations in development of \textit{D. discoideum} synchronization protocols [24] [18] showing no evidence for suspension cell synchronization. In addition, our other experiments more clearly demonstrate the onset of synchronization on substrates (Fig. S1).

Nevertheless, one might wonder whether this synchronization is an artifact of simultaneous cytokinesis of multinuclear cells and cell cluster disintegration, resulting in a sudden large increase in the number of single cells. We observed that multinuclear cells undergo cytokinesis and clusters disintegrate uniformly in time throughout the first 6 hours after plating (see supplementary video). This is also reflected in the fact that we do not observe a sudden large increase in the single cell number after the initial incoherent period (Figs. 1 and S1), demonstrating that cell synchronization is not induced by plating. Previous studies in \textit{D. discoideum} have shown that cytokinesis C, which is responsible for cell division of multinuclear cells, is cell cycle-uncoupled and adhesion-dependent [25], [26], [27], in agreement with our observations.

Next, we investigate the possibility that cells secrete a growth factor or a mitogen that serves as a synchronization signal. We analyzed the microfluidic experiments we performed previously [23] with cells grown on a substrate in a PDMS microfluidic device (Fig. 2c). In these experiments the cells naturally adhered to the glass while fresh growth medium flowed above them with 0.6, 1.7 and 17 \(\mu \text{m/s} \) flow speeds. The shear stresses the cells were exposed to in these flowing experiments were at least two orders of magnitude smaller than the shear stresses needed to induce mechanical responses in \textit{D. discoideum} [28], [29] (for calculation see SI) so it seems unlikely that the loss of coherence is due to the mechanical stress. If the synchronization signal is a small signaling molecule with diffusion coefficient about 300 \(\mu \text{m}^2/\text{s} \), then these flow speeds correspond to Peclet numbers (see SI), quantifying the ratio of advective to diffusive transport, on the order of 0.4 (diffusion dominated), 1 and 10 (advection dominated), respectively [23]. Again, we measured both the cell density dynamics (Fig. 2d) and the cell size distribution dynamics (Fig. 2e). This qualitatively demonstrates the loss of coherence with increasing flow speed. However, it does not quantify the degree of collective coherence or measure the population fraction locked into this collective rhythm.

In order to quantify the collective synchronization of \(N \) cells, we represented the cell cycle position of cell \(j \) as a unit vector in complex plane at angle \(\theta_j \) (Fig. 3a). The collective cell cycle oscillations are then represented as \(N \) points running around a unit circle. The “order parameter” \(z = re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j} \) is a
vector of the centroid of these N points whose radius r represents the degree of collective phase coherence and measures the oscillation magnitude of the entire population. If all the cells oscillate in unison, then the points are clustered together resulting in r = 1. For random phased cell oscillations, r is smaller but unlikely to approach zero unless N is very large. To address this, we calculated the average and the standard deviation of r for N randomly phased oscillators (SI).

Since cell growth and division are correlated in *D. discoideum* (comparing Figs. 1d and 1e), we defined the cell cycle phase \(\theta_j \) to be proportional to the cell size \(a_j \), i.e. \(\theta_j = \frac{2\pi}{a_{\text{max}}-a_{\text{min}}} (a_j - a_{\text{min}}) \), with the minimum and maximum cell size approximated from the cell size distributions to be given by \(a_{\text{min}} = 80 \, \mu m^2 \) and \(a_{\text{max}} = 150 \, \mu m^2 \) (the results are robust with respect to changing limits \(a_{\text{min}} \) and \(a_{\text{max}} \)). Hence, the area ratio is \(\frac{a_{\text{max}}}{a_{\text{min}}} = \frac{150}{80} \approx 1.88 \) which is about a factor of two as expected, since the cells tend to flatten on a glass substrate. If the cells were shaped on a substrate as hemispherical caps then doubling their volume would cause the area to increase by a factor of 1.6. The more flattened out the cells are the more the volume ratio would approach the surface area ratio, so our result does indicate some degree of flattening, consistent with our microscopic observations. The phase coherence r for the experiment analyzed in Fig. 1 shows periodic oscillations (Fig. 3b) which reflects the fact that the cell size distribution broadens between each collective cell division pulse. The peak-to-peak variation in r is about 0.15, with the observed maxima well above the expected value for an incoherent system of the same number of cells and minimum values corresponding to complete incoherency. However, in other experiments there remained some residual level of coherence at the minima (Figs. S1b and S1d). The oscillations in r are possibly a consequence of the fact that while cell growth and division are coordinated, they are still separate processes and the synchronization signal might be a mitogen pulse that initiates cell division but does not persist throughout the majority of the cell cycle. We also calculated the phase coherence for the microfluidic flow experiments and again confirm the loss of coherence with increasing flow speed – the phase coherence approaches the values expected for randomly phased oscillators (Fig. 3c). While the true cell cycle phase is more precisely defined through the appearance of particular sets of cyclin proteins [30], no corresponding live-cell markers are available in *D. discoideum*. However it is still very unlikely that using the “true” relation for \(\theta_j(a_j) \) would erase all trace of the coherence observed here (Figs. 3b, 3c and S1).

Discussion

Collective synchronization has been theoretically studied in various versions of the simple Kuramoto model [31], [32], [33]. The solution for the Kuramoto model for finite oscillator number predicts sustained coherence with increasing cell number, consistent with our shorter 25-hour data (Fig. 3b), but inconsistent with our longer 40-hour experiments (Fig. S1). In addition, the observed feature of oscillating phase
coherence (even if only in cell size) is not predicted by any of the Kuramoto models. These models assume that the coupling strength scales inversely with the number of oscillators, an assumption which needs to be changed in order to make realistic predictions for this system. Here, at least for short times, we expect that the coupling strength is diffusion limited and independent of cell number. A more appropriate description of the synchronized dynamics presented here would also predict a spatial dependence of phase coherence. The onset of synchronization observed here (Figs. 1c, 3b and S1) occurs within few hours which is consistent with the approximately 4 hour time needed for a small molecule with a diffusion coefficient of 300 µm²/s to diffuse a distance of 2 mm and thereby cover the entire viewing field.

There is evidence for quorum sensing factors [34], growth factors and factors repressing cell proliferation in *D. discoideum* [35], [36], [37] and their potential role in synchronization remains to be determined. Furthermore, we speculate as to the possible purpose of these oscillations. It is known that during starvation, *D. discoideum* cells differentiate into prestalk and prespore cells, a process which correlates with cell cycle positions [38], [39], [40]. Since only spore cells potentially survive, there is a competition to form spores. If the cell fate is determined by its cell cycle position (they are certainly correlated), the synchronized fraction could be collectively turned into either prestalk or prespore cells and possibly more effectively competes for becoming a spore.

The absence of spontaneously synchronized growth in suspensions might be caused by the fact that the lack of substrate may introduce a stochastic delay of cytokinesis by a time that is difficult to estimate. In addition, the suspension system is further complicated by the fact that cells can cluster, grow in 3D and that the presence of shear flow in orbital shakers can affect cytokinesis of multinuclear cells. The cytokinesis pathways are different in suspension and on a substrate (for an overview see [25]). In addition to the lack of oscillations, another difference in culturing cell populations between substrate and suspension growth was the lack of lag phase on substrates, also previously observed [23]. As reported here, we have not observed any evidence of lagging even when the cells are plated at a very low surface density of around 0.25 cells/mm² (see section 5 in the SI).

As we indicated, these observations are ripe for quantitative modeling and present elegant challenges: macro-scale synchronization of proliferating oscillators where the micro-scale oscillator is the proliferation process itself. Future experimental work will reveal the extent to which this phenomenon is universal. From a practical standpoint, it presents insight into the problem of cell culturing for stem cell development and large scale parallel bioassays where the difficulty of very dilute cell culture arises, as discussed in [23]. It also demands better appreciation of the importance of the nonliving culture environment: flowing suspension vs. hydrophilic substrates with or without fluid flow. Equally interesting are the biochemical circuits in play, e.g. the timing pattern of the chemical signals that cells are apparently exchanging and the biological underpinnings of this process, i.e. how does this synchronization signal affect different phases of the cell cycle and what is the chemical identity of the putative signal molecule responsible for synchronization (based
on the Peclet estimates presented here it may well be a small molecule) [41]. Returning to the theoretical challenges, while we have argued that our observations reveal a collective proliferation waves that already encompassed the entire field of view (Fig. 1b and 1d), our understanding of the spatial dynamics of these waves remains an open question.

Materials and Methods

Dictyostelium discoideum wild-type AX3 and AX4 axenic strains were grown in HL5 with glucose suspension culture (ForMedium, UK) with 250 µl PenStrep (Invitrogen) per 25 ml flask. No variation in results was noticed with cell culturing for up to one year. Cells were grown in exponential phase on an orbital shaker (150 rpm) in standard 25 ml Erlenmeyer flasks to 10^5 or 10^6 cells/ml (21ºC). For substrate growth, these cultures were transferred to fresh HL5, diluted to 10^2-10^5 cells/ml and 300 µl samples were plated on hydrophilic MatTek (P50G-1.5-14-F) glass bottom dishes. Recording was performed in bright field with an inverted Olympus IX71 or an upright Nikon Optiphot (4X objective both) within 15 minutes of plating. Images were taken every 5 minutes using a Home Science Tools camera MI-DC5000 or a Logitech QuickCam Pro 4000. The Olympus/Home Science combination provided better resolution (Figs. 1 and S1a) than the Optiphot/Logitech system (Fig. S1c). For suspension growth, flasks were sampled hourly for 11-12 hours, by injecting a 20 µl sample into a hemocytometer and ~20 image sets were taken within 3 minutes.

Background was removed using ImageJ (NIH) by subtracting the average of all images from each frame (for each experiment). Particles were detected and counted using ImageJ by thresholding. Cell sizes were measured using the “Analyze particles” tool. Centroids of particles were used as cell coordinates (Figs. 1c, 1d and 1f). The uncertainty in area measurements is roughly equal to our bin size, i.e. ±10 µm in Fig.1c. Microfluidic experiments including imaging systems used were described previously [23]. Briefly, polydimethylsiloxane (PDMS) microfluidic device was employed with continuous flow of fresh HL5 growth medium over a 2 mm × 2 mm × 200 µm chamber, containing exponential growth phase AX3 cells. Frames were recorded every 15 minutes for 16-40 hours. Images were analyzed as described previously. The doubling times were 8-11 hours, consistent with the usual suspension culturing.

Acknowledgments

We thank Dicty Stock Center; Northwestern University for AX3 and AX4 cell lines and Cornell Center for Materials Research for use of the facilities funded by the National Science Foundation under grant DMR-1120296.
Author Contributions

I.S. designed the study. I.S., L.B., and C.F. performed the experiments. I.S. and C.F. analyzed the data and wrote the manuscript.
Figure 1. **Synchronization of cell growth on a substrate.**

a, Growth dynamics of proliferating cells. The mean doubling time is 7.55 ± 0.03 hours.

b, Strobe (at 5 minute intervals over 26 hours) image of cell positions; darker areas correspond to more visited locations.

c, Dynamics of cell size distribution. The sudden jumps are marked by dashed lines and extrapolated to a.

d, Spatial distribution of cells at 25 hours with color representing cell size.

e, Number of cell divisions in 1.2-hour intervals. Peaks in cell divisions correlate with sudden jumps in the cell size distribution shown in part b. Error bars show the upper limit for the counting uncertainty calculated from Poisson noise.

f, Spatial distribution of the three cell division peaks from e, with matching colors.
Figure 2. **Suspension culture growth and microfluidic flow experiments.**

a, Time averaged cell size distributions for substrate and suspension growth.

b, Time course of cell size distribution in suspension.

c, Schematic of the microfluidic devices employed for flow experiments.

d, Growth dynamics in flow experiments.

e, Time course of cell size distributions for substrate flow experiments.
Figure 3. **Quantitative analysis of oscillations.**

a, Phase coherence r, a number between 0 and 1, is defined as a magnitude of the vector sum of N unit vectors each having an angle θ_i, divided by N (shown in red). The angle ψ describes the phase of the collective oscillation.

b, Phase coherence for the experiment in Fig. 1. The cells periodically go in and out of coherence.

c, Phase coherence for microfluidic flow experiments, demonstrating the loss of coherence at higher flow speeds. The cyan line and its spread denote the average and standard deviation for random-phase systems (see SI).

Video legend

First 26 hours recording of *D. discoideum* growth on glass substrate, shown in Fig.1 in the main text. Note the dissociation of multinuclear cells or cell clusters in the first few hours, occurring at arbitrary times (e.g. at 1s, 5s, 7s, 8s, 9s) indicating the lack of cell synchronization by simultaneous dissociation/cytokinesis. The time-lapse was recorded by taking a photo each 5 minutes, and video playback is at 7 frames per second (the full length being 26 hours).
References

13. Kakebeeke, P. I. J., De Wit, R. J. W., Kohtz, D. S. & Konijn, M. T., Negative chemotaxis in

41. We thank the anonymous referee for this comment.

Spontaneous emergence of large scale cell cycle synchronization in amoeba colonies

SUPPLEMENTARY INFORMATION

Igor Segota, Laurent Boulet & Carl Franck

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA

1. Probability distribution of phase coherence r for N random oscillators

We start by representing the size (area) of each cell by a unit vector with length $L = 1$ in complex plane $e^{i\theta_j}$ where j is the cell index. The probability distribution of each step is then:

$$p(\vec{r}_j) = p(r_j, \theta_j) = \frac{1}{2\pi L} \delta(r_j - L)$$

which is normalized:

$$\int_{\theta_j=0}^{2\pi} \int_{r_j=0}^{\infty} p(r_j, \theta_j) r_j d\theta_j = \int_{\theta_j=0}^{2\pi} \int_{r_j=0}^{\infty} \frac{1}{2\pi L} \delta(r_j - L) r_j d\theta_j d\theta_j = 1$$

where $\delta(r_j - L)$ is the Dirac delta function. The average and variance of a single step are:

$$\langle \vec{r}_j \rangle = \int \vec{r}_j p(\vec{r}_j) d\vec{r}_j = L \cdot 0 = 0$$

$$\sigma^2_{\vec{r}_j} = \langle r_j^2 \rangle = \int r_j^2 \frac{1}{2\pi L} \delta(r_j - L) 2\pi r_j d\theta_j = L^2$$

Also note that:

$$\sigma^2_{\vec{x}_j} = \frac{1}{2} \sigma^2_{\vec{r}_j} = \frac{L^2}{2}, \quad \sigma^2_{\vec{r}_j} = \sigma^2_{\vec{x}_j} + \sigma^2_{\vec{y}_j}$$
Now for the average:

\[
\bar{z} = \frac{1}{N} \sum_{j=1}^{N} \bar{r}_j, \quad z_x = \frac{1}{N} \sum_{j=1}^{N} r_{xj}, \quad z_y = \frac{1}{N} \sum_{j=1}^{N} r_{yj}
\]

we can apply Central Limit Theorem for each x and y component individually (if N is large). Each Cartesian component x and y (of z) then has a Normal distribution with mean 0 and variance \(\sigma_{xj}^2 / N = L^2 / (2N)\). The probability distribution of z is:

\[
p(z_x, z_y) = Ae^{-\frac{z_x^2}{2\sigma_{xj}^2/N}} e^{-\frac{z_y^2}{2\sigma_{yj}^2/N}} = Ae^{-\frac{(z_x^2 + z_y^2)}{2\sigma_{xj}^2}} = Ae^{-\frac{r^2}{L^2/N}}
\]

where the normalization constant can be obtained by requiring that the integral of this probability is 1 and we evaluate the integral in polar coordinates \(r, \psi\):

\[
\int_{\psi=0}^{2\pi} \int_{r=0}^{\infty} Ae^{-\frac{r^2}{L^2/N}} r d\psi dr = 1 = 2\pi A \frac{L^2}{2N} = \frac{A\pi L^2}{N}, \quad A = \frac{N}{\pi L^2}
\]

The average phase coherence for a random system can be directly calculated:

\[
\langle r \rangle = \int_{\psi=0}^{2\pi} \int_{r=0}^{\infty} \frac{N}{\pi L^2} e^{-\frac{r^2}{L^2/N}} r^2 d\psi dr = \frac{\sqrt{\pi}}{2} \frac{L}{\sqrt{N}}
\]

and the average of \(r^2\) is:

\[
\langle r^2 \rangle = \int_{\psi=0}^{2\pi} \int_{r=0}^{\infty} \frac{N}{\pi L^2} e^{-\frac{r^2}{L^2/N}} r^3 d\psi dr = \frac{L^2}{N}
\]

so the variance is \(\sigma_r^2 = \langle r^2 \rangle - \langle r \rangle^2 = \frac{L^2}{N} - \frac{\pi L^2}{4 N}\) and the standard deviation is:

\[
\sigma_r = \frac{L}{\sqrt{N}} \sqrt{\frac{4 - \pi}{4}}
\]

which gives us the relative fluctuation:

\[
\frac{\sigma_r}{\langle r \rangle} = \frac{\sqrt{\frac{4 - \pi}{4}}}{\sqrt{\frac{\pi}{2}}} = \sqrt{\frac{4}{\pi} - 1} \approx 0.52
\]

In Fig.3 in the main text we make use of \(\langle r \rangle\) and \(\sigma_r\) to show the average and the standard deviation for the phase coherence for finite populations.
2. Additional examples of cell synchronization

Here we show two more examples indicating an onset of synchronized growth (Fig. S1). The cell synchronization occurs very quickly, within the first several hours. The runs also reveal longer time behavior than in Fig. 3, indicating decay of coherence at long times (see discussion in the main text).

![Additional examples of cell synchronization](image)

Figure S1. Additional examples of cell synchronization. The dynamics of cell size distribution and phase coherence for the first (a,b) and second (c,d) experiment. As in main text, black lines denote phase coherence in our data and cyan line and its spread shows the mean phase coherence and its spread for the corresponding number of randomly oscillating cells.

3. Estimate of the variation of the degree of coherence with increasing number of cells

We can estimate the effect of cell proliferation on the degree of cell cycle synchronization according to the Kuramoto model. Recent efforts to explore the phenomenon of synchronization of many oscillators have focused on extensions of the Kuramoto model to include explicit consideration of network topology, interaction strength and finite population. The problem at hand invites us to consider the last aspect: what are the dynamics of synchronization for a growing population? From the work of Hemmen and Wrenzinki, Ref. S1, we have the following equation for r, long time coherence of the system:

$$ r = \sum_{(\omega)} p(\omega) \left[1 - \left(\frac{\Delta(\omega)}{K r} \right)^2 \right]^{1/2} \quad \text{(SI-1)} $$

where the summation is over a collection of N oscillators whose unperturbed frequencies are given by the set $\{\omega\}$, the probability of each value of frequency is given by $p(\omega)$, K is the interoscillator coupling strength in the (infinitely-ranged) Kuramoto model (Eqn. 1 on p. 146 of Ref. S1) and $\Delta(\omega) \equiv \omega - \langle \omega \rangle$ is the deviation of the frequency of a particular oscillator from the mean frequency of the entire set of oscillators, $\langle \omega \rangle$. We
examine the dependence of r on N with a minimalist distribution: all the oscillators have either $\omega = \omega_0 + \delta$ or $\omega = \omega_0 - \delta$ with equal probability. Then we have the following equation for r:

$$r = \sum_\omega p(\omega) \left[1 - \left(\frac{\delta}{KR} \right)^2 \right]^{1/2} = N \left(\frac{1}{N} \right) \left[1 - \left(\frac{\delta}{KR} \right)^2 \right]^{1/2} = \left[1 - \left(\frac{\delta}{KR} \right)^2 \right]^{1/2} \quad (\text{SI-2})$$

We conclude that r is independent of N. We therefore do not expect the degree of coherence achieved at long times to vary as the cells proliferate.

4. Peclet numbers

Following the discussion in [S2] the Peclet number is the dimensionless number quantifying the ratio of advective to diffusive transport, defined as:

$$Pe = \frac{Lv}{D}$$

where L is a characteristic length of the flow cell, v is the advective flow speed and D is the diffusion coefficient of the particle being transported. In our analysis in the main text, we calculated the Peclet numbers for small molecules such as cAMP to give an estimate of the range of flow rates in the microfluidic experiments that could perturb chemical signaling through the intercellular medium.

5. Synchronization in monoclonal populations and lineage effects

We investigated the degree of phase coherence in monoclonal populations, starting from a 1 cell per 4 mm2 area, which is a minimal cell surface density achievable in our experimental setup. The mean and standard deviation of doubling times owing to cell-to-cell variation were 7.3 ± 0.8 hours. We determined this based on the experiment presented in Fig. 1 in the main text by manually tracking 55 cells (Fig. S2).

![Figure S2. Single cells growth. a, Growth dynamics of single cell growth. b, Distribution of single cell doubling times showing cell-to-cell variability.](image)

If the cell division is thought of as a random walk process with the mean $T_D = 7.3$ hours and standard deviation $\sigma = 0.8$ hours, we can estimate the number of generations needed for the complete loss of lineage
The number of generations \(n \) needed for the standard deviation \(\sigma \sqrt{n} \) to become equal to the mean \(T_D \) is \(n \approx 80 \). This is due to the fact that the cell division clock is relatively precise with only about 10% error (Fig. S2b). The dynamics of cell size distribution and phase coherence for single-cell experiments are shown in Fig. S3 and, as expected, show very strong lineage effect.

Figure S3. **Lineage effects in single cell growth.** a, Cell size distribution for a monoclonal population started from a single cell. b, Phase coherence for the same system showing the lineage effect. The cyan line and its spread denote the average and standard deviation for random-phase systems for large number of cells.

6. Shear stresses employed are well below the threshold for cellular response

We consider the shear stress on a cell modeled as a thin planar disk on the bottom of our microfluidic flow chamber. From Ref. [S3] we expect that such time-independent low Reynolds number (i.e. friction dominated) flow can be approximated as Poiseuille channel flow as follows: We have velocity \(u(y) \hat{x} \) in the horizontal (x) direction and velocity variation only along the vertical (y) driven by a constant pressure gradient \(\frac{dP}{dx} \) according to:

\[
\mu \frac{\partial^2 u}{\partial y^2} = \frac{dP}{dx}
\]

where \(\mu \) is the dynamic viscosity. Applying no slip boundary conditions at the top and bottom of the channel \(u(y = 0) = 0, u(y = h) = 0 \) where \(h \) is the height of the channel, gives us the solution for the velocity:

\[
u(y) = \left(\frac{dP}{dx} \right) \frac{1}{2} y(y - h)
\]

In our case the volumetric flow \(Q \) is experimentally fixed so we have (for channel width given by \(\Delta z \))

\[
Q = \Delta z \int_0^h \frac{dP}{dx} \frac{1}{2} y(y - h)dy = \left(-\frac{dP}{dx} \right) \frac{\Delta z \cdot h^3}{12}
\]

The shear stress \(\sigma \) in our device near the wall is then (Eqn. 1 in Ref. [S4]):

\[
\sigma = \mu \left(\frac{\partial u}{\partial y} \right) = \frac{6Q\mu}{\Delta z \cdot h^2}
\]
For our device (from Ref. [S2]) we have values \(\Delta z = 1400 \mu m, h = 200 \mu m \) and \(Q = 0.4 \mu l/min \) as our maximum flow rate (for Peclet number \(\sim 10 \)) and we used the dynamic viscosity of water at 25 C, \(\mu = 0.894 \text{ mPa} \cdot \text{s} \) [S5]. This gives us a maximum shear stress of \(\sigma_{\text{max}} = 6.4 \cdot 10^{-4} \text{ Pa} \).

Compared to typical shear stresses needed to induce cell motility and rearrangement of actin cytoskeleton in Dictyostelium of about 0.1-0.7 Pa [S4, S6], the shear stresses in our experiments are well below these (more than two orders of magnitude). In endothelial cells, the lowest shear stresses needed to induce responses such as potassium channel activation or the rise of intracellular \(\text{Ca}^{2+} \) is on the range from \(2 \times 10^{-2} \text{ Pa} \) to 1 Pa. [S7]. In the very worst case, the lowest recorded shear stress for these responses in endothelial cells is a factor of 30 greater than the highest shear stress in our experiments [S8]. Therefore, it is very unlikely that the loss of cell cycle coherence observed here (Fig. 2e; main text) is due to shear stress.

References:

